Package: mgwnbr 0.2.0

mgwnbr: Multiscale Geographically Weighted Negative Binomial Regression

Fits a geographically weighted regression model with different scales for each covariate. Uses the negative binomial distribution as default, but also accepts the normal, Poisson, or logistic distributions. Can fit the global versions of each regression and also the geographically weighted alternatives with only one scale, since they are all particular cases of the multiscale approach. Hanchen Yu (2024). "Exploring Multiscale Geographically Weighted Negative Binomial Regression", Annals of the American Association of Geographers <doi:10.1080/24694452.2023.2289986>. Fotheringham AS, Yang W, Kang W (2017). "Multiscale Geographically Weighted Regression (MGWR)", Annals of the American Association of Geographers <doi:10.1080/24694452.2017.1352480>. Da Silva AR, Rodrigues TCV (2014). "Geographically Weighted Negative Binomial Regression - incorporating overdispersion", Statistics and Computing <doi:10.1007/s11222-013-9401-9>.

Authors:Juliana Rosa [aut, cre], Jéssica Vasconcelos [aut], Alan da Silva [aut]

mgwnbr_0.2.0.tar.gz
mgwnbr_0.2.0.zip(r-4.5)mgwnbr_0.2.0.zip(r-4.4)mgwnbr_0.2.0.zip(r-4.3)
mgwnbr_0.2.0.tgz(r-4.4-any)mgwnbr_0.2.0.tgz(r-4.3-any)
mgwnbr_0.2.0.tar.gz(r-4.5-noble)mgwnbr_0.2.0.tar.gz(r-4.4-noble)
mgwnbr_0.2.0.tgz(r-4.4-emscripten)mgwnbr_0.2.0.tgz(r-4.3-emscripten)
mgwnbr.pdf |mgwnbr.html
mgwnbr/json (API)
NEWS

# Install 'mgwnbr' in R:
install.packages('mgwnbr', repos = c('https://julianamrosa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/julianamrosa/mgwnbr/issues

Datasets:

On CRAN:

2.70 score 2 scripts 133 downloads 1 exports 2 dependencies

Last updated 6 months agofrom:2d09f752ec. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:mgwnbr

Dependencies:latticesp